**Fat-Soluble Vitamins: A, D, E, and K**

by L. Bellows and R. Moore*

**What are Vitamins?**

Vitamins are essential micronutrients your body needs in small amounts for various roles throughout the human body. Vitamins are divided into two groups: water-soluble (B-complex vitamins and C vitamins) and fat-soluble vitamins (A, D, E and K). Unlike water-soluble vitamins that need regular replacement in the body, fat-soluble vitamins are stored in the liver and fatty tissues, and are eliminated much more slowly than water-soluble vitamins. For more information on water-soluble vitamins, see fact sheet 9.312 Water-Soluble Vitamins: Vitamin B-Complex and Vitamin C.

**What are Fat-Soluble Vitamins?**

The fat-soluble vitamins, A, D, E, and K, are stored in the body for long periods of time and generally pose a greater risk for toxicity when consumed in excess than water-soluble vitamins. Eating a normal, well-balanced diet will not lead to toxicity in otherwise healthy individuals. However, taking vitamin supplements that contain megadoses of vitamins A, D, E and K may lead to toxicity. The body only needs small amounts of any vitamin.

While diseases caused by a lack of fat-soluble vitamins are rare in the United States, symptoms of mild deficiency can develop without adequate amounts of vitamins in the diet. Additionally, some health problems may decrease the absorption of fat, and in turn, decrease the absorption of vitamins A, D, E and K. Consult a medical professional about any potential health problems that may interfere with vitamin absorption.

**Vitamin A: Retinol**

**What is Vitamin A**

Vitamin A, also called retinol, has many functions in the body. In addition to helping the eyes adjust to light changes, vitamin A plays an important role in bone growth, tooth development, reproduction, cell division, gene expression, and regulation of the immune system. The skin, eyes, and mucous membranes of the mouth, nose, throat and lungs depend on vitamin A to remain moist. Vitamin A is also an important antioxidant that may play a role in the prevention of certain cancers.

**Food Sources for Vitamin A**

Eating a wide variety of foods is the best way to ensure that the body gets enough vitamin A. The retinol, retinal, and retinoic acid forms of vitamin A are supplied primarily by foods of animal origin such as dairy products, fish and liver. Some foods of plant origin contain the antioxidant, beta-carotene, which the body converts to vitamin A. Beta-carotene, comes from fruits and vegetables, especially those that are orange or dark green in color. Vitamin A sources also include carrots, pumpkin, winter squash, dark green leafy vegetables and apricots, all of which are rich in beta-carotene.

**How much Vitamin A**

The recommendation for vitamin A intake is expressed as micrograms (mcg) of retinol activity equivalents (RAE). Retinol activity equivalents account for the fact that the body converts only a portion of beta-carotene to retinol. One RAE equals 1 mcg of retinol or 12 mcg of beta-carotene (Table 1). The Recommended Dietary Allowance (RDA) for vitamin A is 900 mcg/day for adult males and 700 mcg/day for adult females.

---

1 L. Bellows, Colorado State University Extension food and nutrition specialist and assistant professor; and R. Moore, graduate student. 11/2012

© Colorado State University Extension. 3/02. Revised 11/12.
www.ext.colostate.edu
Exclusively breast-fed infants

Disease

Covered and protected skin

Elderly

absorbed from the small intestine, helping

works by increasing the amount of calcium

body’s use of calcium and phosphorous. It

Vitamin D

is in the form of beta-carotene, which

sure the majority of vitamin A provided

take a multivitamin, check the label to be

contain high doses of vitamin A. If you

reach this level consuming food alone,

Intake Level (UL) for adults is 3,000 mcg

levels of vitamin A are more of a concern

Vitamin A deficiency in the United

Compared to vitamin A, it takes twice

the amount of carotene rich foods to meet

body’s vitamin A requirements, so

one may need to increase consumption of

carotene containing plant foods.

Recent studies indicate that vitamin

A requirements may be increased due to

hyperthyroidism, fever, infection, cold, and

exposure to excessive amounts of sunlight.

Those that consume excess alcohol or have

renal disease should also increase intake of

vitamin A.

Vitamin A Deficiency

Vitamin A deficiency in the United

States is rare, but the disease that results

is known as xerophthalmia. It most

commonly occurs in developing nations

usually due to malnutrition. Since vitamin

A is stored in the liver, it may take up to

2 years for signs of deficiency to appear.

Night blindness and very dry, rough skin

may indicate a lack of vitamin A. Other

signs of possible vitamin A deficiency

include decreased resistance to infections,

faulty tooth development, and slower bone
growth.

Too much Vitamin A

In the United States, toxic or excess

levels of vitamin A are more of a concern

than deficiencies. The Tolerable Upper

Intake Level (UL) for adults is 3,000 mcg

RAE (Table 2). It would be difficult to

reach this level consuming food alone,

but some multivitamin supplements

contain high doses of vitamin A. If you

take a multivitamin, check the label to be

sure the majority of vitamin A provided

is in the form of beta-carotene, which

appears to be safe. Symptoms of vitamin A

toxicity include dry, itchy skin, headache,
nausea, and loss of appetite. Signs of severe

overuse over a short period of time include
dizziness, blurred vision and slowed

growth. Vitamin A toxicity also can cause

severe birth defects and may increase the

risk for hip fractures.

Vitamin D

What is Vitamin D

Vitamin D plays a critical role in the

body’s use of calcium and phosphorous. It

works by increasing the amount of calcium

absorbed from the small intestine, helping
to form and maintain bones. Vitamin D

benefits the body by playing a role in

immunity and controlling cell growth.

Children especially need adequate amounts of

vitamin D to develop strong bones and

healthy teeth.

Food Sources for Vitamin D

The primary food sources of vitamin D

are milk and other dairy products fortified

with vitamin D. Vitamin D is also found in

oily fish (e.g., herring, salmon and sardines)
as well as in cod liver oil. In addition to

the vitamin D provided by food, we

obtain vitamin D through our skin which

produces vitamin D in response to sunlight.

How much Vitamin D

The Recommended Dietary

Allowance (RDA) for vitamin D appears

as micrograms (mcg) of cholecalciferol

(vitamin D3) (Table 1). From 12 months
to age fifty, the RDA is set at 15 mcg.

Twenty mcg of cholecalciferol equals

800 International Units (IU), which is

the recommendation for maintenance of

healthy bone for adults over fifty. Table 1

lists additional recommendations for

various life stages.

Exposure to ultraviolet light is necessary

for the body to produce the active form

of vitamin D. Ten to fifteen minutes of

sunlight without sunscreen on the hands,

arms and face, twice a week is sufficient to

receive enough vitamin D. This can easily

be obtained in the time spent riding a bike
to work or taking a short walk. In order to

reduce the risk for skin cancer one should

apply sunscreen with an SPF of 15 or more,

if time in the sun exceeds 10 to 15 minutes.

Vitamin D Deficiency

Symptoms of vitamin D deficiency in

growing children include rickets (long, soft

bowed legs) and flattening of the back of

the skull. Vitamin D deficiency in adults

may result in osteomalacia (muscle and

bone weakness), and osteoporosis (loss of

bone mass).

Recently published data introduces a

concern that some adults and children may

be more prone to developing vitamin D
deficiency due to an increase in sunscreen

use. In addition, those that live in inner

cities, wear clothing that covers most of

the skin, or live in northern climates where

little sun is seen in the winter are also prone
to vitamin D deficiency. Since most foods

have very low vitamin D levels (unless they

are enriched) a deficiency may be more

likely to develop without adequate exposure
to sunlight. Adding fortified foods to the
diet such as milk, and for adults including

a supplement, are effective at ensuring

adequate vitamin D intake and preventing

low vitamin D levels.

Vitamin D deficiency has been

associated with increased risk of

common cancers, autoimmune diseases,

hypertension, and infectious disease. In

the absence of adequate sun exposure, at

least 800 to 1,000 IU of vitamin D3 may

be needed to reach the circulating level

required to maximize vitamin D’s benefits.

Who is at Risk — These populations may

require extra vitamin D in the form of

supplements or fortified foods:

• Exclusively breast-fed infants: Human

milk only provides 25 IU of vitamin D

per liter. All breast-fed and partially

breast-fed infants should be given a

vitamin D supplement of 400 IU/day.

• Dark Skin: Those with dark pigmented

skin synthesize less vitamin D upon

exposure to sunlight compared to

those with light pigmented skin.

• Elderly: This population has a reduced

ability to synthesize vitamin D upon

exposure to sunlight, and is also

more likely to stay indoors and wear

sunscreen which blocks vitamin D

synthesis.

• Covered and protected skin: Those that

cover all of their skin with clothing

while outside, and those that wear

sunscreen with an SPF factor of 8,

block most of the synthesis of vitamin

D from sunlight.

• Disease: Fat malabsorption syndromes,

inflammatory bowel disease (IBD),

and obesity are all known to result in a

decreased ability to absorb and/or use

vitamin D in fat stores.

Too much Vitamin D

The Tolerable Upper Intake Level (UL)

for vitamin D is set at 100 mcg for people 9

years of age and older (Table 2). High doses

of vitamin D supplements coupled with

large amounts of fortified foods may cause

accumulations in the liver and produce

signs of poisoning. Signs of vitamin D
toxicity include excess calcium in the blood, slowed mental and physical growth, decreased appetite, nausea and vomiting.

It is especially important that infants and young children do not consume excess amounts of vitamin D regularly, due to their small body size.

Vitamin E: Tocopherol

What is Vitamin E

Vitamin E benefits the body by acting as an antioxidant, and protecting vitamins A and C, red blood cells, and essential fatty acids from destruction. Research from decades ago suggested that taking antioxidant supplements, vitamin E in particular, might help prevent heart disease and cancer. However, newer findings indicate that people who take antioxidant and vitamin E supplements are not better protected against heart disease and cancer than non-supplement users. Many studies show a link between regularly eating an antioxidant rich diet full of fruits and vegetables, and a lower risk for heart disease, cancer, and several other diseases. Essentially, recent research indicates that to receive the full benefits of antioxidants and phytonutrients in the diet, one should consume these compounds in the form of fruits and vegetables, not as supplements.

Food Sources for Vitamin E

About 60 percent of vitamin E in the diet comes from vegetable oil (soybean, corn, cottonseed, and safflower). This also includes products made with vegetable oil (margarine and salad dressing). Vitamin E sources also include fruits and vegetables, grains, nuts (almonds and hazelnuts), seeds (sunflower) and fortified cereals.

How much Vitamin E

The Recommended Dietary Allowance (RDA) for vitamin E is based on the most active and usable form called alpha-tocopherol (Table 1). Food and supplement labels list alpha-tocopherol as the unit International units (IU) not in milligrams (mg). One milligram of alpha-tocopherol equals to 1.5 International Units (IU). RDA guidelines state that males and females over the age of 14 should receive 15 mcg of alpha-tocopherol per day. Consuming vitamin E in excess of the RDA does not result in any added benefits.

Vitamin E Deficiency

Vitamin E deficiency is rare. Cases of vitamin E deficiency usually only occur in premature infants and in those unable to absorb fats. Since vegetable oils are good sources of vitamin E, people who excessively reduce their total dietary fat may not get enough vitamin E.

Too much Vitamin E

The Tolerable Upper Intake Level (UL) for vitamin E is shown in Table 2. Vitamin E obtained from food usually does not pose a risk for toxicity. Supplemental vitamin E is not recommended due to lack of evidence supporting any added health benefits. Megadoses of supplemental vitamin E may pose a hazard to people taking blood-thinning medications such as Coumadin (also known as warfarin) and those on statin drugs.

Vitamin K

What is Vitamin K

Vitamin K is naturally produced by the bacteria in the intestines, and plays an essential role in normal blood clotting, promoting bone health, and helping to produce proteins for blood, bones, and kidneys.

Food Sources for Vitamin K

Good food sources of vitamin K are green, leafy-vegetables such as turnip greens, spinach, cauliflower, cabbage and broccoli, and certain vegetables oils including soybean oil, cottonseed oil, canola oil and olive oil. Animal foods, in general, contain limited amounts of vitamin K.

How much Vitamin K

To help ensure people receive sufficient amounts of vitamin K, an Adequate Intake (AI) has been established for each age group (Table 1). Food and supplement labels list vitamin K.

Vitamin K Deficiency

Without sufficient amounts of vitamin K, hemorrhaging can occur. Vitamin K deficiency may appear in infants or in people who take anticoagulants, such as Coumadin (warfarin), or antibiotic drugs. Newborn babies lack the intestinal bacteria to produce vitamin K and need a supplement for the first week. Those on anticoagulant drugs (blood thinners) may become vitamin K deficient, but should not change their vitamin K intake without consulting a physician. People taking antibiotics may lack vitamin K temporarily because intestinal bacteria are sometimes killed as a result of long-term use of antibiotics. Also, people with chronic diarrhea may have problems absorbing sufficient amounts of vitamin K through the intestine and should consult their physician to determine if supplementation is necessary.

Too much Vitamin K

Although no Tolerable Upper Intake Level (UL) has been established for vitamin K, excessive amounts can cause the breakdown of red blood cells and liver damage. People taking blood-thinning drugs or anticoagulants should moderate their intake of foods with vitamin K, because excess vitamin K can alter blood clotting times. Large doses of vitamin K are not advised.

Summary

- Fat-soluble vitamins: A, D, E, and K — are stored in the body for long periods of time, and pose a greater risk for toxicity than water-soluble vitamins. Fat-soluble vitamins are only needed in small amounts.
- Beta carotene is an important antioxidant that the body converts to Vitamin A, and it is found in a variety of fruits and vegetables.
- Inadequate dietary consumption of vitamin D, along with limited sun exposure, makes vitamin D deficiency a growing public health concern.
- Vitamin E benefits the body by acting as an antioxidant, and research indicates that it may offer a protective effect if obtained through a diet rich in fruits and vegetables, as opposed to a supplement or multivitamin.
- The bacteria in our gut produce vitamin K, and it is also found in green leafy vegetables.
Table 1. Recommended Dietary Intake (RDA) and Adequate Intake (AI) for Fat-Soluble Vitamins

<table>
<thead>
<tr>
<th>Life Stage Group</th>
<th>Vitamin A (mcg)¹/RAE</th>
<th>Vitamin D (mcg)²</th>
<th>Vitamin E (mcg α-TE)³</th>
<th>Vitamin K (mcg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infants¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 - 6mo</td>
<td>400*</td>
<td>10*</td>
<td>4*</td>
<td>2.0*</td>
</tr>
<tr>
<td>6mo - 12mo</td>
<td>500*</td>
<td>10*</td>
<td>5*</td>
<td>2.5*</td>
</tr>
<tr>
<td>Children</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - 3y</td>
<td>300</td>
<td>15</td>
<td>6</td>
<td>30*</td>
</tr>
<tr>
<td>4 - 8y</td>
<td>400</td>
<td>15</td>
<td>7</td>
<td>55*</td>
</tr>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 - 13y</td>
<td>600</td>
<td>15</td>
<td>11</td>
<td>60*</td>
</tr>
<tr>
<td>14 - 18y</td>
<td>900</td>
<td>15</td>
<td>15</td>
<td>75*</td>
</tr>
<tr>
<td>19 - 30y</td>
<td>900</td>
<td>15</td>
<td>15</td>
<td>120*</td>
</tr>
<tr>
<td>31 - 50y</td>
<td>900</td>
<td>15</td>
<td>15</td>
<td>120*</td>
</tr>
<tr>
<td>51 - 70y</td>
<td>900</td>
<td>15</td>
<td>15</td>
<td>120*</td>
</tr>
<tr>
<td>&gt;70y</td>
<td>900</td>
<td>20</td>
<td>15</td>
<td>120*</td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 - 13y</td>
<td>600</td>
<td>15</td>
<td>11</td>
<td>60*</td>
</tr>
<tr>
<td>14 - 18y</td>
<td>700</td>
<td>15</td>
<td>15</td>
<td>75*</td>
</tr>
<tr>
<td>19 - 30y</td>
<td>700</td>
<td>15</td>
<td>15</td>
<td>90*</td>
</tr>
<tr>
<td>31 - 50y</td>
<td>700</td>
<td>15</td>
<td>15</td>
<td>90*</td>
</tr>
<tr>
<td>51 - 70y</td>
<td>700</td>
<td>15</td>
<td>15</td>
<td>90*</td>
</tr>
<tr>
<td>&gt;70y</td>
<td>700</td>
<td>20</td>
<td>15</td>
<td>90*</td>
</tr>
<tr>
<td>Pregnant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 - 18y</td>
<td>750</td>
<td>15</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>19 - 30y</td>
<td>770</td>
<td>15</td>
<td>15</td>
<td>90</td>
</tr>
<tr>
<td>31 - 50y</td>
<td>770</td>
<td>15</td>
<td>15</td>
<td>90</td>
</tr>
<tr>
<td>Lactation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 - 18y</td>
<td>1200</td>
<td>15</td>
<td>19</td>
<td>75</td>
</tr>
<tr>
<td>19 - 30y</td>
<td>1300</td>
<td>15</td>
<td>19</td>
<td>90</td>
</tr>
<tr>
<td>31 - 50y</td>
<td>1300</td>
<td>15</td>
<td>19</td>
<td>90</td>
</tr>
</tbody>
</table>

¹As retinol activity equivalents (RAEs). 1 RAE = 1mcg retinol or 12 mcg beta-carotene.

²As cholecalciferol (vitamin D3). 10 mcg cholecalciferol = 400 IU of Vitamin D.

³As alpha-tocopherol equivalents. 1 mg of alpha-tocopherol = 1.5 IU of Vitamin E=22IU of d-alpha-tocopherol=33 IU of dl-alpha- tocopherol

*At 6 months of age, infants may be introduced to solid foods while remaining on formula or breast milk. There may be some overlap in specific nutrient requirements.

*Indicates an Adequate Intake (AI). All other values are Recommended Dietary Allowance (RDA).
<table>
<thead>
<tr>
<th>Life Stage Group</th>
<th>Vitamin A (mcg/d)</th>
<th>Vitamin D (mcg/d)</th>
<th>Vitamin E (mg a-TE)</th>
<th>Vitamin K*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infants^1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 - 6mo</td>
<td>600</td>
<td>25</td>
<td>ND^2</td>
<td>ND</td>
</tr>
<tr>
<td>6mo - 12mo</td>
<td>600</td>
<td>38</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Children</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - 3y</td>
<td>600</td>
<td>63</td>
<td>200</td>
<td>ND</td>
</tr>
<tr>
<td>4 - 8y</td>
<td>900</td>
<td>75</td>
<td>300</td>
<td>ND</td>
</tr>
<tr>
<td>Males/Females</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 - 13y</td>
<td>1700</td>
<td>100</td>
<td>600</td>
<td>ND</td>
</tr>
<tr>
<td>14 - 18y</td>
<td>2800</td>
<td>100</td>
<td>800</td>
<td>ND</td>
</tr>
<tr>
<td>19 - 70y</td>
<td>3000</td>
<td>100</td>
<td>1000</td>
<td>ND</td>
</tr>
<tr>
<td>&gt;70y</td>
<td>3000</td>
<td>100</td>
<td>1000</td>
<td>ND</td>
</tr>
<tr>
<td>Pregnant and Lactating</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;18</td>
<td>2800</td>
<td>100</td>
<td>800</td>
<td>ND</td>
</tr>
<tr>
<td>19 - 50y</td>
<td>3000</td>
<td>100</td>
<td>1000</td>
<td>ND</td>
</tr>
</tbody>
</table>

^1At 6 months of age, infants may be introduced to solid foods while remaining on formula or breast milk. There may be some overlap in specific nutrient requirements.

^2ND = not determinable due to insufficient data

*An UL for vitamin K was not established.

References
