Soaps have been used to control insects for more than 200 years. Recently, there has been increased interest in and use of these products. This change is due to a better understanding of how to use soaps most effectively and a desire to try insecticides that are easier and safer to use than many currently available alternatives.

How soaps and detergents kill insects is still poorly understood. In most cases, control results from disruption of the cell membranes of the insect. Soaps and detergents may also remove the protective waxes that cover the insect, causing death through excess loss of water.

Soap-Detergent Sprays

Soaps and detergents act strictly as contact insecticides, with no residual effect. To be effective, sprays must be applied directly to and thoroughly cover the insect.

Several insecticidal soaps are distributed for control of insects and mites. Available under a variety of trade names, the active ingredient of all is potassium salt of fatty acids. Soaps are chemically similar to liquid hand soaps. However, there are many features of commercial insecticidal soap products that distinguish them from the dishwashing liquids or soaps that are sometimes substituted. Insecticidal soaps sold for control of insects:

- are selected to control insects;
- are selected to minimize potential plant injury; and
- are of consistent manufacture.

Some household soaps and detergents also make effective insecticides. In particular, certain brands of hand soaps and liquid dishwashing detergents can be effective for this purpose. They are also substantially less expensive. However, there is increased risk of plant injury with these products. They are not designed for use on plants. Dry dish soaps and all clothes-washing detergents are too harsh to be used on plants. Also, many soaps and detergents are poor insecticides. Identifying safe and effective soap-detergent combinations for insect control requires experimentation. Regardless of what product is used, soap-detergent sprays are always applied diluted with water, typically at a concentration of around 2 to 3 percent (Table 1).

Susceptible Insects

Most research with insecticidal soaps and detergents has involved control of plant pests. In general, these sprays are effective against most small, soft-bodied arthropods, such as aphids, young scales, whiteflies, psyllids, mealybugs, and spider mites. Larger insects, such as caterpillars, sawflies and beetle larvae, generally are immune to soap sprays. However, a few large insects, including boxelder bugs and Japanese beetles, are susceptible.

Insecticidal soaps are considered selective insecticides because of their minimal adverse effects on other organisms. Lady beetles, green lacewings, pollinating bees and most other beneficial insects are not very susceptible to soap sprays. Predatory mites, often important in control of spider mites, are an exception: a beneficial group of organisms easily killed by soaps.

Application

One of the most serious potential drawbacks to the use of soap-detergent sprays is their potential to cause plant injury – their phytotoxicity. Certain plants are sensitive to these sprays and may be seriously injured. For example, most commercial insecticidal soaps list plants such as hawthorn, sweet pea, cherries and plum as being sensitive to soaps. Portulaca and certain tomato varieties also are sometimes damaged by insecticidal
soaps. The risk of plant damage is greater with homemade preparations of household soaps or detergents. When in doubt, test soap-detergent sprays for phytotoxicity problems on a small area a day or two before an extensive area is treated.

Plant injury can be reduced by using sprays that are diluted more than the 2 to 3 percent suggested on label instructions. To reduce leaf injury, wash plants within a couple of hours after the application. Limiting the number of soap applications can also be important, as leaf damage can accumulate with repeated exposure.

However, because of the short residual action, repeat applications may be needed at relatively short intervals (four to seven days) to control certain pests, such as spider mites and scale crawlers. Also, application must be thorough and completely wet the pest. This usually means spraying undersides of leaves and other protected sites. Insects that cannot be completely wetted, such as aphids within curled leaves, will not be controlled.

Environmental factors also can affect use of soaps. In particular, soaps (but not synthetic detergents) are affected by the presence of minerals found in hard water, which results in chemical changes producing insoluble soaps (soap scum). Control decreases if hard-water sources are used. Insecticidal soaps may also be more effective if drying is not overly rapid, such as early or late in the day.

Soaps and detergents can offer a relatively safe and easy means to control many insect pests. As with all pesticides, however, there are limitations and hazards associated with their use. Understand these limitations, and carefully follow all label instructions.

Table 1. Approximate mix to produce various dilute soap sprays.

<table>
<thead>
<tr>
<th>Percent dilution desired</th>
<th>Approximate amount of soap to add to water to produce: (Table 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gallon</td>
</tr>
<tr>
<td>1</td>
<td>2 1/2 Tbsp (-)</td>
</tr>
<tr>
<td>2</td>
<td>5 Tbsp (+)</td>
</tr>
<tr>
<td>3</td>
<td>8 Tbsp (+)</td>
</tr>
<tr>
<td>4</td>
<td>10 Tbsp (+)</td>
</tr>
</tbody>
</table>

(+) Will produce a solution of slightly higher concentration than indicated. (-) Will produce a solution of slightly lower concentration than indicated.