Agriculture and Home Economics Cooperative Extension Work in New York EX-5338 SHEET 03

MANURE STORAGE

NOTES:

- Design depth of 10 feet
- Design based on equal fluid pressure
- Footings, dams, and paving for liquid removal
- Footing dams and paving for liquid removal
- 6 ft. more option is outlined and discussed
- Fill areas and plowing concrete beam slab
- All temporary fillings are shown with stack

POLAR INC. 1961

1. Excavate to good bearing 2.5 ft below
2. Excavate to 200 ft. storage - 10 ft deep
3. Walls needed for protection

<table>
<thead>
<tr>
<th>Size (in.)</th>
<th>18</th>
<th>40</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONCRETE BLOCK & MIST 

ANCHOR COLLETS 

CONCRETE INLET PIPE 

MANURE INLET PIPE SEE DETAIL A

MANURE DETAIL A

MANURE DETAIL B

PLAN SCALE

SECTION SCALE

INLET PIPE DETAIL A

INLET PIPE DETAIL B

NOTES:

- Design depth of 10 feet
- Design based on equal fluid pressure
- Footings, dams, and paving for liquid removal
- Footing dams and paving for liquid removal
- 6 ft. more option is outlined and discussed
- Fill areas and plowing concrete beam slab
- All temporary fillings are shown with stack

POLAR INC. 1961

1. Excavate to good bearing 2.5 ft below
2. Excavate to 200 ft. storage - 10 ft deep
3. Walls needed for protection

<table>
<thead>
<tr>
<th>Size (in.)</th>
<th>18</th>
<th>40</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONCRETE BLOCK & MIST 

ANCHOR COLLETS 

CONCRETE INLET PIPE 

MANURE INLET PIPE SEE DETAIL A

MANURE DETAIL A

MANURE DETAIL B

PLAN SCALE

SECTION SCALE

INLET PIPE DETAIL A

INLET PIPE DETAIL B

NOTES:

- Design depth of 10 feet
- Design based on equal fluid pressure
- Footings, dams, and paving for liquid removal
- Footing dams and paving for liquid removal
- 6 ft. more option is outlined and discussed
- Fill areas and plowing concrete beam slab
- All temporary fillings are shown with stack

POLAR INC. 1961

1. Excavate to good bearing 2.5 ft below
2. Excavate to 200 ft. storage - 10 ft deep
3. Walls needed for protection

<table>
<thead>
<tr>
<th>Size (in.)</th>
<th>18</th>
<th>40</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONCRETE BLOCK & MIST 

ANCHOR COLLETS 

CONCRETE INLET PIPE 

MANURE INLET PIPE SEE DETAIL A

MANURE DETAIL A

MANURE DETAIL B

PLAN SCALE

SECTION SCALE

INLET PIPE DETAIL A

INLET PIPE DETAIL B

NOTES:

- Design depth of 10 feet
- Design based on equal fluid pressure
- Footings, dams, and paving for liquid removal
- Footing dams and paving for liquid removal
- 6 ft. more option is outlined and discussed
- Fill areas and plowing concrete beam slab
- All temporary fillings are shown with stack

POLAR INC. 1961

1. Excavate to good bearing 2.5 ft below
2. Excavate to 200 ft. storage - 10 ft deep
3. Walls needed for protection

<table>
<thead>
<tr>
<th>Size (in.)</th>
<th>18</th>
<th>40</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>